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Abstract 

This paper inlxoduces new ideas for quanthqcation of the similarity between chemical 
compouncls. The method adopted makes use of similarity measures derived through com- 
parison of two strings. The derived data on the similarity are then analyzed and applied in 
the identification of clusters in which the entities are more homogeneous and similar than 
those outside a cluster. 

1. Introduction 

The interest in "classification" is present in many scientific studies and arises in 
the context of  many applications. In chemistry, classificaüon is applied in a number of 
studies with the assumption that structurally similar compounds possess similar proper- 
ties. Classification is an inherently multivariate problem. The high-dimensional nature 
of the classification provides an opportunity, but also involves difficulties, in the choice 
of  the appropriate methodology. There are two broad categories of classification prob- 
lems. In the first, the data of the entities and the group membership are known, while 
the unknown membership of other entities has to be determined through the analysis of 
the data. In the pattem recognition literature, this type of classification problem is 
referred to as "leaming with a teacher". In statistical terminology, it falls under the 
heading of "discriminant analysis". In a second category of classification problems, the 
groups am themselves unknown and the primary purpose of the data analysis is to 
determine the groupings from the data so that entities within the same group am in some 
sense more similar or homogeneous than those which belong to different groups. This 
type of  classification problem is referred to as "leaming without a teacher". In statistical 
terminology, this falls under the heading of "cluster analysis". 

Although discriminant analysis and cluster analysis are viewed as a dichotomy 
of the classification problems, in practice they are frequently combined. Classification 
problems are treated in a three-stage procedure: input, algorithm and output. All 
stages interact with each other, and the applied methods in any one stage play 
roles in the other two. 
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During the last two decades, stimulated by the easy access to numerical and 
graphic compuüng facilities, a number of new approaches and algorithms for discrimi- 
nant analysis and cluster analysis were developed. As a rule, focus has been on the 
development of new algorithrns. 

The approach presented in this report introduces a quantification of the similarity 
of chemical compounds derived from comparison of two strings. The derived data about 
the similarity are then analyzed and applied in identification of clusters in which the 
present entities are more homogeneous and similar than those outside the cluster. The 
method is i11ustrated on a set of chemical compounds exhibiting biological acüvity. 

2. Similarity measures derived from string comparison 

Consider a pair of  strings X and Y, made up of symbols from a f inte  alphabet A. 
Different quantifications [2] of  the similarity and dissimilarity between them fall into 
two major groups: numerical and non-numerical. The generalized Levenshtein distance 
(GLD), the length of their longest common subsequence, and the length of their shortest 
common supersequence are numerical. The set of their common subsequences and the 
set of their common supersequences are non-numerical quantiües. Both groups of 
measures make use of the elementary abstract measure of comparison, D(X, Y) between 
X and Y, which is expressed in terms of a set of elementary measures d(*.*).  The 
abstract measure D(X, Y) between X, Y ~ A* is a map whose domain is A* x A*. 
Formally: 

D(X, Y) = / ,  the identity, if X = Y. 

D(X, Y) is symmetric if and only if the function d(*.*)  inducing it obeys: 

d(a,b) = d(b,a). 

Here, we are interested in quantification of similarity and its application in chemical 
classificaUon. Therefore, the numerical measure known under the name "generalized 
Levenshtein distance", which is a special of the abstract measure of comparison D(X, Y), 
will be considered and applied. 

2.1. THE SET OF ELEMENTARY MEASURES 

Let A be a finite alphabet and A* be the set of strings over A. A string X ~ A* 
of the form X = x~ . . . . .  x u, where each x i ~ A, is said to be of length X = N. d(* .*)  is 
a function whose arguments a r e a  pair of symbols belonging to A*. 

The elementary measure d(ä, b) can be interpreted as the measure associated with 
transforming "b" to "a", for a, b ~ A* or, more explicitly, as a set of  edit operations, 
i.e. Gx, v. Gx, r is an exhaustive enumeration of the set of  all the ways by which Y can 
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be edited to X using the edit operation of substitution, insertion and deletion without 
destroying the order of the occurrence of the symbols in X and Y. 

The generalized Levenshtein distance (GLD) [3,4] between two strings X and Y 
is defined as the minimum of the sum of the elementary edit distances associated with 
edit operations required to transform Y to X. The elementary edit distances themselves 
are specified in terms of a map dl(*.*) from A* × A to R, the set consisting of 
nonnegative real numbers and ,~. 

The elementary edit distances obey the following conditions: 

d(a ,b)>O,  for all a , b ,  a, b e A ;  

d(a ,b)=O,  if a = b ,  a , b ~ A ;  

d ( a , b ) < d ( a , c ) + d ( c , b ) ,  for all a , b , c ~ A .  

Subject to the above constraints, the GLD obeys the following for all X, Y, z e A: 

GLD(X, Y) > 0, 

GLD(X, Y) = 0, 

GLD(X, Y) < GLD(X, Z) + GLD(Z, Y). 

if X ¢ Y; 

on ly i f  X = Y ;  

In general, a greater value of the GLD between two strings indicates a greater dissimi- 
larity between them. 

The edit operations are explained by the following example. Let us compare the 
strings X and Y: 

string X a d b f c e; 

string Y b c f a e d. 

The operations required to transform X to Y are: 

string X a d b f c e 
delete a 

d b f c e  
delete d 

b f c e  
substitute a for c 

b f a e  
insert c 

b c f a e  
insert d 

stfing Y b c f a  e d 

After five edit operations, the string Y is obtained. 
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2.2 COMPUTING GLD 

The computation of GLD in the case where the two strings have the same number 
of elements and the present elements am the same but differently ordered may be done 
by an algorithm which computes the necessary edit operaüons by calculation of  the 
identities (matches) found in the traces of the strings X and Y. A trace between strings 
Y and X as illustrated in fig. 1 consists of  the source string X above and the target 
sequence Y below, usually with lines from some elements in the source to some 

a d b f c e  

Fig. 1. A trace between two strings. 

elements of the target. An element can have no more than one line, the lines must not 
cross each other, and the source elements with lines must have an ordered corre- 
spondence with the target elements. The lines provide a correspondence between the 
source and the target. The pair of  elements connected by a line is an identity only when 
the elements are the same. 

The number of identities in all possible traces derived for two strings is given by 

N 

E = ~., (ci - 1), 
i=1 

where N is the number of string elements, and c i is the number of identities in trace i 
on the right-hand side of  element i. The method for counting identities in traces is 
explained elsewhere [8]. 

3. Classification of chemical compounds 

Consider a set of  N compounds which exhibit some similar physicochemical or 
other property as elements of the alphabet A. Let us order the elements of  A in a string. 
The string is produced by comparing one element of A (for example "i") with the other 
elements present in A. The comparison may be done by any of the well-known methods 
for comparing two objects [6,7], i.e. Euclidian distance, Jaccard coefficient, etc. The 
ordering may be done according to decreasing value of the calculated distances (i.e. 
Euclidian or any other) of  the elements of A to the element "i". If the procedure is 
repeated with the other elements, N strings will be obtained in which the elements of 
A are ordered according to one particular element belonging to A. As a result of  the 
procedure, and N x N matrix is obtained in which the rows are strings of  ordered 
elements with equal length and same content. If two such su~gs  am compared, then 
they will differ at least in the placement of two elements, i.e. the first elements of  the 
string according to which the other elements are ordered. If, for example, these two 
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elements are the most potent structures, exhibiting highest biological acfivity, then the 
two ranks will give a partial order of potency for the rest of the structures. Partial orders 
may be used for identification of a common strategie fragment responsible for the 
acüvity [9]. 

The relationship between the two elements according to which the others are 
ordered in the two strings can be expressed by a correlation index derived from 
the value E: 

2E 
rLi - N (N - 1) 1. 

If r is near 1, the ordering of the chemical objects in string X is similar to the ordering 
of the chemical objects in string Y, whereas if r is near 0, the ordering is completely 
different. 

The chemical compounds i and j am similar if they generate a similar ordering 
of the other elements of the set represented by the alphabet A. If b o b  compounds 
generate similar rankings of the others and if both of them are close to each other in the 
other ranks, then they are similar. Similarity derived in this way (by considering the 
similarity to all compounds in the data se0 ensures that many different structural 
features in the elements of the set of compounds am considered. 

Classification of the compounds is done according to the values of r .  obtained for 
J4 

each possible pair in the data set. The purpose of the classification is to identify groups 
of compounds with close values of r. The idenfification is done with a recursive 
procedure. The procedure is as foUows: 

In the first step, the data am presented in the form of an N x N matrix, i.e. the 
correlation matrix R is searched for the highest value of r. The compounds with the 
higbest value of rare  the kemels of the future clusters. A pair of compounds i, j which 
satisfies the prescribed value for r (for example, r greater or equal to 0.95) is chosen 
from the data. They are the first elements of the future cluster. If there am more elements 
which satisfy the same condition for r as the pair already chosen, then this cluster will 
have more than two kemel elements. The elements for the next kernel are generated in 
the same way. The process of kernel generation continues until no compounds with the 
prescribed value of r a re  left. 

The second step completes the clustering. An element k is added to a parücular 
kernel if the value of r for this element, i.e.r. , is greater than or equal to a prescribed 

x , n  
value (r, designates the correlaüon coefficient between this element and the elements /C, ~'1 

present in the cluster). If two or more kernels satisfy this condition, then the element is 
added to the kerael with the higher value. This value is different from the threshold 
value for the kemel generation in the first step. The prescribed values of r in both steps 
may be changed during the clustering procedure according to the nature of  the data 
classified. Sometimes it happens that the first prescribed threshold value of r is too high. 
This results in a small number of clusters. In this case the threshold value should be 
decreased. On the other hand, the kemel threshold value should not be too low because 
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in ltfis case the similarity criterion is lost. The  best  and mos t  valuable  results are 
obtained when  the threshold value varies between 0.8 and 0.95. The  classif icat ion 
algori thm is presented in the appendix.  

4. Ciassification of fluorophosphonic acid derivatives 

As an example ,  we have selected a set o f  twenty-seven  f luorophosphonic  acid 
der ivaüves  exhibiüng inhibitor activity on the membrane  enzyme  o f  animal  acetyl-  

cholinesterase [10,1 1]. The  inhibitor activity of  the compounds  was measured  as the 
b imolecular  rate constant (of  the purified acetylchol inestemse f m m  the e lec tmphorus  
electricus organ) and calculated according to Aldridge and Reiner  [12]. The  compounds ,  
together  with their b imolecular  constants,  abbreviated as in rel. [13], where  interested 
readers can find their  full chemical  harnes and other  details, are shown in table 1. All 

Table 1 

The studied set of compounds 

No. Label R 1 R 2 Bimolecular constant 
[mol-lmin -1 ] 

1 MeSL -CH 3 - O -  1.7 x 106 
2 EtSL -C2H 5 - O -  1.6 x 103 

3 PrSL -C2H 7 - O -  .>~N..<~? 1.3 x 103 
4 BuS1 -C4H 9 - O -  ~ [.,r/j - 6.0 X 104 

5 HxSL -C6H23 - O -  ~2 6.2 x lot 
6 HpSL -C7H15 - O -  F-~-Rt 1.3 x 105 

o 

7 OcSL -C•HI7 - O -  8.5 × 104 
8 DoSL ---C12H25 - O -  8.7 X 10 4 
9 MeSL3 -CH 3- -O-CH2-CH 2- 6.1 x 105 

10 MeSLA -CH 3- -O-CH2-CH2-O- 2.1 x 106 
11 MeSL5 -CH 3- -NH-CH2-CH2CH2-O- 3.6 x 106 
12 MeSL6 -CH 3- =CH-CO-NH-CH2-CH2-O- 2.0 x 102 
13 MeSL7 -CH 3- -NH-CO-CH2-S-CH2-CH2-O- 1.9 x 107 
14 MeSL8 -CH 3- -O-CH2-O-NH-(CH2)3-O- 9.0 x 10 s 
15 MeSL10 -CH 3- -NH-CO-CH2-O-(CH2)5-O- 2.6 x 105 
16 MeSLll -CH 3- -O-(CH2)3-NH-CO-CH2-S-(CH2)2-O- 102 - l0 t 
17 MeSL21 -CH 3- -CH2-O- 7.4 x 105 
18 MeSL32 -CH 3- =CH-CH2-O- 6.6 x 10 s 
19 MeSL53 -CH 3- -O-(CH2)3-O- 3.0 x 106 
20 MeSL64 -CH 3- -CH2-O-(CH2)3-O- 6.8 x 107 
21 MeSL6A -CH 3- =CH-CH2-O-CH2-CH2-O- 4.8 x 107 
22 MeSL74 -CH 3- -O-(CH2)2-O-(CI-I2)2-O- 3.6 x 107 
23 MeSL85 -CH 3- -O-(CH2)3-O-(CH2)2-O- 2.2 x 107 
24 EtSLTa -C2H 5- -NH-CO-CH2S-CH2-CH2-O- 3.0 x 106 
25 EtSL7E -C2H 5- -O-CO-CH2-S-CH2-O- 2.5 x 107 
26 EtSL10 -C2H »- -NH-CO-CH2-O-(CH2)5-O- 7.1 x 105 
27 MeSLTE -CH 3- -O-CO-CH2-S-(CH2)2-O- 2.9 x 107 
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compounds from table 1 display some inhibitory activity, which varies from molecule 
to molecule by several orders of magnitude. 

As molecular descriptors, path counts with different lengths in the molecular 
graph were applied and the "gain of information" [8] was used as a measure for ordering 
the compounds in strings. The classification resulted in five clusters, depicted in fig. 2. 
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Fig. 2. The obtained clustering of the 
fluorophosphonic acid derivatives. 

The space allocation of the points representing a particular compound in fig. 1 is a 
function of the activity, i.e. the bimolecular constant and the number of atoms in the 
attached functional group to the piperidine ring (this parameter being chosen because 
an assumption based on experimental findings exists about the correlation between the 
activity and the geometrical arrangement of the functional group). The measured bio- 
chemical properties, i.e. the bimolecular constants of the compounds in the identified 
cluster, were quite homogeneous, therefore an average value of the activity was calcu- 
lated. It may be noticed that the values of biological activity vary from cluster to cluster 
by an order of magnitude of two. Careful observation of the represented clusters 
confirms the previous assumption that the geometry and the spatial arrangement of the 
attached chains in the functional group largely determine the biochemical properties of 
the molecules. The structural properties of the compounds and the way in which they 
were classified suggest an explanation of their biochemical behaviour. The highest 
activity was observed within a cluster containing R 2 with 6 to 8 atoms and short R v The 
other compounds with 11, 12 or more atoms as weil as with 4 to 5 atoms in R 2 and short 
R 1 displayed weak inhibitory activity. These facts may be explained with the optimal 
geometry of the extended con_formation of an R 2 chain composed of 6-8  atoms and its 
best fit to the active site pocket. 



224 B. Jerman-Bla~i6, M. Randid, Similarity measures for sets of  strings 

The distance between the active serine hydroxyl of  m-AChE and the anionic site 
on the pocket wall is approximately the same as the length of an extended R 2 chain with 
the optimal number of  atoms. The small differences in activity between the compounds 
of  this group are due to the differences in the chemical content of  the chain, i.e. some 
of the peptide bonds am present and some of them contain carbonyl bonds. The 
intensive drop in activity observed within the compounds with larger R 2 chains may be 
explained in terms of the increasing volume of the molecules and the larger mechanical 
strain on the active center walls, which force the molecules to unfavourable conforma- 
tions. 

5. Conclusions 

The method presented makes use of the similafity postulate and introduces a new 
method for the classification of chemical objects. The approach involves ordefing of the 
strucurës and classification of the structures by GLD. The results imply a decision of 
which two among the studied chemical objects, i.e. stmctures, are the most similar. This 
information is used as a basis for identification and generation of clusters in which all 
elements show considerable similarity. The method is suitable for QSAR studies and 
property prediction. 

Appendix 

The algorithm: 

generation of kemels 
m := number of objects in the data set; 
n :=0; 
repeat 
choose a pair of compounds [i,j]: r ( i , j )  > kmax; 
n : = n  + 1; 
cluster n := [i,j]; 

repeat 
for k : =  1 t o m d o  
if r(k, c) > kmax for an element c being in cluster n then 

cluster n := cluster [n + k]; 
until (no such k) 

untfl (no such i, j); 
joining other elements to the obtained kernel 

f o r i : = l t o m d o  
choose all clusters that r(i, c) = cmax for aU 
elements c in the cluster and then join the element i 
to the cluster having the greatest average correlation. 
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